Declaring a Pointcut
Pointcuts determine join points of interest and thus enable us to control
when advice runs. Infra AOP only supports method execution join points for Infra
beans, so you can think of a pointcut as matching the execution of methods on Infra
beans. A pointcut declaration has two parts: a signature comprising a name and any
parameters and a pointcut expression that determines exactly which method
executions we are interested in. In the @AspectJ annotation-style of AOP, a pointcut
signature is provided by a regular method definition, and the pointcut expression is
indicated by using the @Pointcut
annotation (the method serving as the pointcut signature
must have a void
return type).
An example may help make this distinction between a pointcut signature and a pointcut
expression clear. The following example defines a pointcut named anyOldTransfer
that
matches the execution of any method named transfer
:
-
Java
@Pointcut("execution(* transfer(..))") // the pointcut expression
private void anyOldTransfer() {} // the pointcut signature
The pointcut expression that forms the value of the @Pointcut
annotation is a regular
AspectJ pointcut expression. For a full discussion of AspectJ’s pointcut language, see
the AspectJ
Programming Guide (and, for extensions, the
AspectJ 5
Developer’s Notebook) or one of the books on AspectJ (such as Eclipse AspectJ, by Colyer
et al., or AspectJ in Action, by Ramnivas Laddad).
Supported Pointcut Designators
Infra AOP supports the following AspectJ pointcut designators (PCD) for use in pointcut expressions:
-
execution
: For matching method execution join points. This is the primary pointcut designator to use when working with Infra AOP. -
within
: Limits matching to join points within certain types (the execution of a method declared within a matching type when using Infra AOP). -
this
: Limits matching to join points (the execution of methods when using Infra AOP) where the bean reference (Infra AOP proxy) is an instance of the given type. -
target
: Limits matching to join points (the execution of methods when using Infra AOP) where the target object (application object being proxied) is an instance of the given type. -
args
: Limits matching to join points (the execution of methods when using Infra AOP) where the arguments are instances of the given types. -
@target
: Limits matching to join points (the execution of methods when using Infra AOP) where the class of the executing object has an annotation of the given type. -
@args
: Limits matching to join points (the execution of methods when using Infra AOP) where the runtime type of the actual arguments passed have annotations of the given types. -
@within
: Limits matching to join points within types that have the given annotation (the execution of methods declared in types with the given annotation when using Infra AOP). -
@annotation
: Limits matching to join points where the subject of the join point (the method being run in Infra AOP) has the given annotation.
Because Infra AOP limits matching to only method execution join points, the preceding discussion
of the pointcut designators gives a narrower definition than you can find in the
AspectJ programming guide. In addition, AspectJ itself has type-based semantics and, at
an execution join point, both this
and target
refer to the same object: the
object executing the method. Infra AOP is a proxy-based system and differentiates
between the proxy object itself (which is bound to this
) and the target object behind the
proxy (which is bound to target
).
Due to the proxy-based nature of Infra AOP framework, calls within the target object are, by definition, not intercepted. For JDK proxies, only public interface method calls on the proxy can be intercepted. With CGLIB, public and protected method calls on the proxy are intercepted (and even package-visible methods, if necessary). However, common interactions through proxies should always be designed through public signatures. Note that pointcut definitions are generally matched against any intercepted method. If a pointcut is strictly meant to be public-only, even in a CGLIB proxy scenario with potential non-public interactions through proxies, it needs to be defined accordingly. If your interception needs include method calls or even constructors within the target class, consider the use of Infra-driven native AspectJ weaving instead of Infra proxy-based AOP framework. This constitutes a different mode of AOP usage with different characteristics, so be sure to make yourself familiar with weaving before making a decision. |
Infra AOP also supports an additional PCD named bean
. This PCD lets you limit
the matching of join points to a particular named Infra bean or to a set of named
Infra beans (when using wildcards). The bean
PCD has the following form:
bean(idOrNameOfBean)
The idOrNameOfBean
token can be the name of any Infra bean. Limited wildcard
support that uses the *
character is provided, so, if you establish some naming
conventions for your Infra beans, you can write a bean
PCD expression
to select them. As is the case with other pointcut designators, the bean
PCD can
be used with the &&
(and), ||
(or), and !
(negation) operators, too.
The The |
Combining Pointcut Expressions
You can combine pointcut expressions by using &&,
||
and !
. You can also refer to
pointcut expressions by name. The following example shows three pointcut expressions:
-
Java
package com.xyz;
public class Pointcuts {
@Pointcut("execution(public * *(..))")
public void publicMethod() {} (1)
@Pointcut("within(com.xyz.trading..*)")
public void inTrading() {} (2)
@Pointcut("publicMethod() && inTrading()")
public void tradingOperation() {} (3)
}
1 | publicMethod matches if a method execution join point represents the execution
of any public method. |
2 | inTrading matches if a method execution is in the trading module. |
3 | tradingOperation matches if a method execution represents any public method in the
trading module. |
It is a best practice to build more complex pointcut expressions out of smaller named
pointcuts, as shown above. When referring to pointcuts by name, normal Java visibility
rules apply (you can see private
pointcuts in the same type, protected
pointcuts in
the hierarchy, public
pointcuts anywhere, and so on). Visibility does not affect
pointcut matching.
Sharing Named Pointcut Definitions
When working with enterprise applications, developers often have the need to refer to
modules of the application and particular sets of operations from within several aspects.
We recommend defining a dedicated class that captures commonly used named pointcut
expressions for this purpose. Such a class typically resembles the following
CommonPointcuts
example (though what you name the class is up to you):
-
Java
package com.xyz;
import org.aspectj.lang.annotation.Pointcut;
public class CommonPointcuts {
/**
* A join point is in the web layer if the method is defined
* in a type in the com.xyz.web package or any sub-package
* under that.
*/
@Pointcut("within(com.xyz.web..*)")
public void inWebLayer() {}
/**
* A join point is in the service layer if the method is defined
* in a type in the com.xyz.service package or any sub-package
* under that.
*/
@Pointcut("within(com.xyz.service..*)")
public void inServiceLayer() {}
/**
* A join point is in the data access layer if the method is defined
* in a type in the com.xyz.dao package or any sub-package
* under that.
*/
@Pointcut("within(com.xyz.dao..*)")
public void inDataAccessLayer() {}
/**
* A business service is the execution of any method defined on a service
* interface. This definition assumes that interfaces are placed in the
* "service" package, and that implementation types are in sub-packages.
*
* If you group service interfaces by functional area (for example,
* in packages com.xyz.abc.service and com.xyz.def.service) then
* the pointcut expression "execution(* com.xyz..service.*.*(..))"
* could be used instead.
*
* Alternatively, you can write the expression using the 'bean'
* PCD, like so "bean(*Service)". (This assumes that you have
* named your Infra service beans in a consistent fashion.)
*/
@Pointcut("execution(* com.xyz..service.*.*(..))")
public void businessService() {}
/**
* A data access operation is the execution of any method defined on a
* DAO interface. This definition assumes that interfaces are placed in the
* "dao" package, and that implementation types are in sub-packages.
*/
@Pointcut("execution(* com.xyz.dao.*.*(..))")
public void dataAccessOperation() {}
}
You can refer to the pointcuts defined in such a class anywhere you need a pointcut
expression by referencing the fully-qualified name of the class combined with the
@Pointcut
method’s name. For example, to make the service layer transactional, you
could write the following which references the
com.xyz.CommonPointcuts.businessService()
named pointcut:
<aop:config>
<aop:advisor
pointcut="com.xyz.CommonPointcuts.businessService()"
advice-ref="tx-advice"/>
</aop:config>
<tx:advice id="tx-advice">
<tx:attributes>
<tx:method name="*" propagation="REQUIRED"/>
</tx:attributes>
</tx:advice>
The <aop:config>
and <aop:advisor>
elements are discussed in Schema-based AOP Support. The
transaction elements are discussed in Transaction Management.
Examples
Infra AOP users are likely to use the execution
pointcut designator the most often.
The format of an execution expression follows:
execution(modifiers-pattern? ret-type-pattern declaring-type-pattern?name-pattern(param-pattern) throws-pattern?)
All parts except the returning type pattern (ret-type-pattern
in the preceding snippet),
the name pattern, and the parameters pattern are optional. The returning type pattern determines
what the return type of the method must be in order for a join point to be matched.
*
is most frequently used as the returning type pattern. It matches any return
type. A fully-qualified type name matches only when the method returns the given
type. The name pattern matches the method name. You can use the *
wildcard as all or
part of a name pattern. If you specify a declaring type pattern,
include a trailing .
to join it to the name pattern component.
The parameters pattern is slightly more complex: ()
matches a
method that takes no parameters, whereas (..)
matches any number (zero or more) of parameters.
The (*)
pattern matches a method that takes one parameter of any type.
(*,String)
matches a method that takes two parameters. The first can be of any type, while the
second must be a String
. Consult the
Language
Semantics section of the AspectJ Programming Guide for more information.
The following examples show some common pointcut expressions:
-
The execution of any public method:
execution(public * *(..))
-
The execution of any method with a name that begins with
set
:execution(* set*(..))
-
The execution of any method defined by the
AccountService
interface:execution(* com.xyz.service.AccountService.*(..))
-
The execution of any method defined in the
service
package:execution(* com.xyz.service.*.*(..))
-
The execution of any method defined in the service package or one of its sub-packages:
execution(* com.xyz.service..*.*(..))
-
Any join point (method execution only in Infra AOP) within the service package:
within(com.xyz.service.*)
-
Any join point (method execution only in Infra AOP) within the service package or one of its sub-packages:
within(com.xyz.service..*)
-
Any join point (method execution only in Infra AOP) where the proxy implements the
AccountService
interface:this(com.xyz.service.AccountService)
this
is more commonly used in a binding form. See the section on Declaring Advice for how to make the proxy object available in the advice body. -
Any join point (method execution only in Infra AOP) where the target object implements the
AccountService
interface:target(com.xyz.service.AccountService)
target
is more commonly used in a binding form. See the Declaring Advice section for how to make the target object available in the advice body. -
Any join point (method execution only in Infra AOP) that takes a single parameter and where the argument passed at runtime is
Serializable
:args(java.io.Serializable)
args
is more commonly used in a binding form. See the Declaring Advice section for how to make the method arguments available in the advice body.Note that the pointcut given in this example is different from
execution(* *(java.io.Serializable))
. The args version matches if the argument passed at runtime isSerializable
, and the execution version matches if the method signature declares a single parameter of typeSerializable
. -
Any join point (method execution only in Infra AOP) where the target object has a
@Transactional
annotation:@target(infra.transaction.annotation.Transactional)
You can also use @target
in a binding form. See the Declaring Advice section for how to make the annotation object available in the advice body. -
Any join point (method execution only in Infra AOP) where the declared type of the target object has an
@Transactional
annotation:@within(infra.transaction.annotation.Transactional)
You can also use @within
in a binding form. See the Declaring Advice section for how to make the annotation object available in the advice body. -
Any join point (method execution only in Infra AOP) where the executing method has an
@Transactional
annotation:@annotation(infra.transaction.annotation.Transactional)
You can also use @annotation
in a binding form. See the Declaring Advice section for how to make the annotation object available in the advice body. -
Any join point (method execution only in Infra AOP) which takes a single parameter, and where the runtime type of the argument passed has the
@Classified
annotation:@args(com.xyz.security.Classified)
You can also use @args
in a binding form. See the Declaring Advice section how to make the annotation object(s) available in the advice body. -
Any join point (method execution only in Infra AOP) on a Infra bean named
tradeService
:bean(tradeService)
-
Any join point (method execution only in Infra AOP) on Infra beans having names that match the wildcard expression
*Service
:bean(*Service)
Writing Good Pointcuts
During compilation, AspectJ processes pointcuts in order to optimize matching performance. Examining code and determining if each join point matches (statically or dynamically) a given pointcut is a costly process. (A dynamic match means the match cannot be fully determined from static analysis and that a test is placed in the code to determine if there is an actual match when the code is running). On first encountering a pointcut declaration, AspectJ rewrites it into an optimal form for the matching process. What does this mean? Basically, pointcuts are rewritten in DNF (Disjunctive Normal Form) and the components of the pointcut are sorted such that those components that are cheaper to evaluate are checked first. This means you do not have to worry about understanding the performance of various pointcut designators and may supply them in any order in a pointcut declaration.
However, AspectJ can work only with what it is told. For optimal performance of matching, you should think about what you are trying to achieve and narrow the search space for matches as much as possible in the definition. The existing designators naturally fall into one of three groups: kinded, scoping, and contextual:
-
Kinded designators select a particular kind of join point:
execution
,get
,set
,call
, andhandler
. -
Scoping designators select a group of join points of interest (probably of many kinds):
within
andwithincode
-
Contextual designators match (and optionally bind) based on context:
this
,target
, and@annotation
A well written pointcut should include at least the first two types (kinded and scoping). You can include the contextual designators to match based on join point context or bind that context for use in the advice. Supplying only a kinded designator or only a contextual designator works but could affect weaving performance (time and memory used), due to extra processing and analysis. Scoping designators are very fast to match, and using them means AspectJ can very quickly dismiss groups of join points that should not be further processed. A good pointcut should always include one if possible.