Infra Type Conversion
The core.convert
package provides a general type conversion system. The system defines
an SPI to implement type conversion logic and an API to perform type conversions at
runtime. Within a Infra container, you can use this system as an alternative to
PropertyEditor
implementations to convert externalized bean property value strings to
the required property types. You can also use the public API anywhere in your application
where type conversion is needed.
Converter SPI
The SPI to implement type conversion logic is simple and strongly typed, as the following interface definition shows:
package infra.core.convert.converter;
public interface Converter<S, T> {
T convert(S source);
}
To create your own converter, implement the Converter
interface and parameterize S
as the type you are converting from and T
as the type you are converting to. You can also transparently apply such a
converter if a collection or array of S
needs to be
converted to an array or collection of T
, provided that a delegating array or collection
converter has been registered as well (which DefaultConversionService
does by default).
For each call to convert(S)
, the source argument is guaranteed to not be null. Your
Converter
may throw any unchecked exception if conversion fails. Specifically, it should throw an
IllegalArgumentException
to report an invalid source value.
Take care to ensure that your Converter
implementation is thread-safe.
Several converter implementations are provided in the core.convert.support
package as
a convenience. These include converters from strings to numbers and other common types.
The following listing shows the StringToInteger
class, which is a typical Converter
implementation:
package infra.core.convert.support;
final class StringToInteger implements Converter<String, Integer> {
public Integer convert(String source) {
return Integer.valueOf(source);
}
}
Using ConverterFactory
When you need to centralize the conversion logic for an entire class hierarchy
(for example, when converting from String
to Enum
objects), you can implement
ConverterFactory
, as the following example shows:
package infra.core.convert.converter;
public interface ConverterFactory<S, R> {
<T extends R> Converter<S, T> getConverter(Class<T> targetType);
}
Parameterize S to be the type you are converting from and R to be the base type defining
the range of classes you can convert to. Then implement getConverter(Class<T>)
,
where T is a subclass of R.
Consider the StringToEnumConverterFactory
as an example:
package infra.core.convert.support;
final class StringToEnumConverterFactory implements ConverterFactory<String, Enum> {
public <T extends Enum> Converter<String, T> getConverter(Class<T> targetType) {
return new StringToEnumConverter(targetType);
}
private final class StringToEnumConverter<T extends Enum> implements Converter<String, T> {
private Class<T> enumType;
public StringToEnumConverter(Class<T> enumType) {
this.enumType = enumType;
}
public T convert(String source) {
return (T) Enum.valueOf(this.enumType, source.trim());
}
}
}
Using GenericConverter
When you require a sophisticated Converter
implementation, consider using the
GenericConverter
interface. With a more flexible but less strongly typed signature
than Converter
, a GenericConverter
supports converting between multiple source and
target types. In addition, a GenericConverter
makes available source and target field
context that you can use when you implement your conversion logic. Such context lets a
type conversion be driven by a field annotation or by generic information declared on a
field signature. The following listing shows the interface definition of GenericConverter
:
package infra.core.convert.converter;
public interface GenericConverter {
public Set<ConvertiblePair> getConvertibleTypes();
Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType);
}
To implement a GenericConverter
, have getConvertibleTypes()
return the supported
source→target type pairs. Then implement convert(Object, TypeDescriptor,
TypeDescriptor)
to contain your conversion logic. The source TypeDescriptor
provides
access to the source field that holds the value being converted. The target TypeDescriptor
provides access to the target field where the converted value is to be set.
A good example of a GenericConverter
is a converter that converts between a Java array
and a collection. Such an ArrayToCollectionConverter
introspects the field that declares
the target collection type to resolve the collection’s element type. This lets each
element in the source array be converted to the collection element type before the
collection is set on the target field.
Because GenericConverter is a more complex SPI interface, you should use
it only when you need it. Favor Converter or ConverterFactory for basic type
conversion needs.
|
Using ConditionalGenericConverter
Sometimes, you want a Converter
to run only if a specific condition holds true. For
example, you might want to run a Converter
only if a specific annotation is present
on the target field, or you might want to run a Converter
only if a specific method
(such as a static valueOf
method) is defined on the target class.
ConditionalGenericConverter
is the union of the GenericConverter
and
ConditionalConverter
interfaces that lets you define such custom matching criteria:
public interface ConditionalConverter {
boolean matches(TypeDescriptor sourceType, TypeDescriptor targetType);
}
public interface ConditionalGenericConverter extends GenericConverter, ConditionalConverter {
}
A good example of a ConditionalGenericConverter
is an IdToEntityConverter
that converts
between a persistent entity identifier and an entity reference. Such an IdToEntityConverter
might match only if the target entity type declares a static finder method (for example,
findAccount(Long)
). You might perform such a finder method check in the implementation of
matches(TypeDescriptor, TypeDescriptor)
.
The ConversionService
API
ConversionService
defines a unified API for executing type conversion logic at
runtime. Converters are often run behind the following facade interface:
package infra.core.convert;
public interface ConversionService {
boolean canConvert(Class<?> sourceType, Class<?> targetType);
<T> T convert(Object source, Class<T> targetType);
boolean canConvert(TypeDescriptor sourceType, TypeDescriptor targetType);
Object convert(Object source, TypeDescriptor sourceType, TypeDescriptor targetType);
}
Most ConversionService
implementations also implement ConverterRegistry
, which
provides an SPI for registering converters. Internally, a ConversionService
implementation delegates to its registered converters to carry out type conversion logic.
A robust ConversionService
implementation is provided in the core.convert.support
package. GenericConversionService
is the general-purpose implementation suitable for
use in most environments. ConversionServiceFactory
provides a convenient factory for
creating common ConversionService
configurations.
Configuring a ConversionService
A ConversionService
is a stateless object designed to be instantiated at application
startup and then shared between multiple threads. In a Infra application, you typically
configure a ConversionService
instance for each Infra container (or ApplicationContext
).
Infra picks up that ConversionService
and uses it whenever a type
conversion needs to be performed by the framework. You can also inject this
ConversionService
into any of your beans and invoke it directly.
If no ConversionService is registered with Infra, the original PropertyEditor -based
system is used.
|
To register a default ConversionService
with Infra, add the following bean definition
with an id
of conversionService
:
<bean id="conversionService"
class="infra.context.support.ConversionServiceFactoryBean"/>
A default ConversionService
can convert between strings, numbers, enums, collections,
maps, and other common types. To supplement or override the default converters with your
own custom converters, set the converters
property. Property values can implement
any of the Converter
, ConverterFactory
, or GenericConverter
interfaces.
<bean id="conversionService"
class="infra.context.support.ConversionServiceFactoryBean">
<property name="converters">
<set>
<bean class="example.MyCustomConverter"/>
</set>
</property>
</bean>
It is also common to use a ConversionService
within a Web MVC application. See
Conversion and Formatting in the Web MVC chapter.
In certain situations, you may wish to apply formatting during conversion. See
The FormatterRegistry
SPI for details on using FormattingConversionServiceFactoryBean
.
Using a ConversionService
Programmatically
To work with a ConversionService
instance programmatically, you can inject a reference to
it like you would for any other bean. The following example shows how to do so:
-
Java
@Service
public class MyService {
private final ConversionService conversionService;
public MyService(ConversionService conversionService) {
this.conversionService = conversionService;
}
public void doIt() {
this.conversionService.convert(...)
}
}
For most use cases, you can use the convert
method that specifies the targetType
, but it
does not work with more complex types, such as a collection of a parameterized element.
For example, if you want to convert a List
of Integer
to a List
of String
programmatically,
you need to provide a formal definition of the source and target types.
Fortunately, TypeDescriptor
provides various options to make doing so straightforward,
as the following example shows:
-
Java
DefaultConversionService cs = new DefaultConversionService();
List<Integer> input = ...
cs.convert(input,
TypeDescriptor.forObject(input), // List<Integer> type descriptor
TypeDescriptor.collection(List.class, TypeDescriptor.valueOf(String.class)));
Note that DefaultConversionService
automatically registers converters that are
appropriate for most environments. This includes collection converters, scalar
converters, and basic Object
-to-String
converters. You can register the same converters
with any ConverterRegistry
by using the static addDefaultConverters
method on the DefaultConversionService
class.
Converters for value types are reused for arrays and collections, so there is
no need to create a specific converter to convert from a Collection
of S
to a
Collection
of T
, assuming that standard collection handling is appropriate.